TA-CENTER 2 TA-C2

TA-CENTER 2 - Boring and facing heads realized for machines with automatic tool change and applicable on every machining centers.
The toolholder slide movement is managed by a drive unit External U-DRIVE fixed to the spindle flange.

COMPONENTS U-DRIVE

- 1. Base element
- 2. Servomotor
- 3. Mechanical unit for automatic hook-up to the TA-CENTER 2 drive
- 4. The unit comes with air inlet connection for cleaning the drive
- 5. Manual lubrication
- 6. n°6 M5x8 holes to be used for securing a possible protective casing

COMMAND

The TA-CENTER 2 boring and facing heads are designed to be used on machines with automatic tool change, therefore essentially on all machining centers. The control of the feed, the tool-holder slide and the tool position, also during rotation, are controlled by a U-DRIVE gearbox unit. This group is managed directly by an axis called "U" of the numerical control of the machining center. A machining center set up in this way allows to hit several different features such as internal and external turning, grooves, taper bores, concave and convex radius machining, cylindrical and conical threads and facing for serration.

PREARRANGEMENTS

Balancing pic.2

TA-CENTER heads are designed with two counterweights (5) for automatic balancing, that move opposite to the slide (3) allowing to machine at a higher number of rpm without noticeable oscillations.

Coolant supply pic.1

Coolant exits from the two adjustable nozzles in the TA-C2 located next to the slide after crossing the taper and the rotating body of the head. This noteworthy advantage ensures longer duration of the cutting edge, quicker cutting speed and for obtaining good surface finishes. The centralized supply of coolant does not harm the TA-C2 of which the internal labyrinth protected by an O-ring. It is advisable to not exceed 50 BAR of pressure.

MACHINING

TA-CENTER 2

APPLICATION

U-Drive

the spindle flange.

D'ANDREA has developed a standard U-DRIVE unit (horizontal and vertical), on which different types of servomotors can be mounted. The U-DRIVE can be easily positioned on the machine (see photo) with plate **(18)** adapted to the machine that is connected and fixed to the holes **(C)** on the front of

Other special configurations can be provided on request

U-DRIVE assembly TA-CENTER

For a correct installation of the U-DRIVE and TA-CENTER 2, carefully follow these instructions:

1. Mount the cone on the TA-CENTER 2, detect the ${\bf B}$ distance between the gauge limit of the cone (4) and the retaining pin plane (9).

Calculate X height with the formula X=B+4 mm.

Warning, if more heads are employed on the same machine, calculate the X height by using the lower B value.

2. Mount the plate **(18)** and the U-DRIVE on the machine according to the Layout and detect the F distance between the spindle gauge limit and the U-DRIVE plane.

The F distance must be equal to the X height.

The plate **(18)** is thicker than indicated in the layout, to get the F and X distances alike, the plate thickness must be trimmed **(18)**. After adjusting the F height, remount the U-DRIVE by paying attention to its alignment, the position of the drive shaft **(22)** and distance **(23)** between the drive shaft axis **(22)** and the machine spindle centre.

The driving flange (24) must point towards the centre of the spindle.

3. To align the TA-CENTER 2 to the U-DRIVE, remove the two locking dowels **(21)** of the orientation ring **(8)** to the left and right of the white reference point, and replace them temporarily with two longer dowels, integrating the ring to the fixed body. Screw the 4 ring dowels until they lay slightly to the cone **(4)** (pic.1-2).

After checking that the head is in the **HOME POSITION**, that the slide stroke is 0 and that the transmission shaft **(22)** of the U-DRIVE is aligned with the retaining pin **(9)** of the head, spindle orientation (M19), manually mount the head in the machine. Insert the cone **(4)** in the spindle by rotating the fixed body **(1)** up to the U-DRIVE, once the TA-CENTER 2 and U-DRIVE are aligned, lock the TA-CENTER 2 in the machine and tighten all dowels **(21)** putting the two original dowels one at a time. During this operation, pay attention to the height between the ring **(8)** and the fixed body **(1)** (**pic.3)**. Load and unload the TA-CENTER 2 manually a few times to check the alignment.

68

APPLICATION

U-DRIVE assembly TA-CENTER

WARNING During tool changes the "A" shafts of the TA-CENTER and "A1" U-DRIVE must comply with the correct "HOME POSITION" setting and must be always run in an unidirectional way to allow :

- the perfect coupling tooth "A" to "A1".
- can be properly attached, the rotating body can be properly coupled to the fixed body.
- to avoid exceeding runout and cause damage inside the head, recognition of the "0" position of the tool slide is required.

15. Air inlet connection for cleaning the drive 1/8 GAS.

- **18.** Support plate for blocking and adapting the X dimension of the U-DRIVE ($X_{0}^{+0.3}$) mm.
- 19. Release rotation lock travel.
- 20. Locking-unlocking lever.

TA-CENTER 2

O

SUPPLY P120 **TA-C2 / TA-T2**

P130

REF.	CODE	ØH7	А	В	С	D	Е	Kg.	
P 120 TA-C2.110 / TA-T2.110	431550160250	16	30	17	25	50	40	0.2	
P 120 TA-C2.170 / TA-T2.170	431550250380	25	47	27.5	38	76	54	0.55	

The chip removals are indicative for normal working conditions on steels with hardness 160-200 HB, (average Ks = 2000 N/mm2) recommended Vt 120/160 m/min. The optimal values and working times must be determined with trials.

Ξ

D2

TA-C2.170

TA-T2.170

20 ~ 194

100

153 ~ 263

140

203 ~ 460

38.5

D1

TA-C2.110

TA-T2.110

10 ~ 102

65

96 ~ 126

90

126 ~ 250

25.5

 \sim

CHIP REMOVAL CAPACITY

TA-C2 / TA-T2

MAX ROTATION SPEED **TA-C2 / TA-T2**

D

D

L

D1

L1

D2

L2

K02			ARE	ORS HT		SUPPLY		
For Interchangeability with previous version TA-CENTER, use TA-C2 with mechanical ratio R.0.5 .				REF.	CODE	- C2 / T A	A-T2	
			DIN69871-A40-HT5.36.5	41HT05024000	36.5 21.5			
			00	DIN69871-A40-HT5.44.5	41HT05024001	44.5 29.5		
BEE	CODE		두두	MAS403 BT40-HT5.27	41HT05034000	27 12		
	501251100900		400	MAS403 BT40-HT5.36.5	41HT05034001	36.5 21.5		
KU2 TA-C2.110 1.80 R. 0.25	501251100600		4 4	MAS403 BT40-HT5.44.5	41HT05034002	44.5 29.5		
K02 IA-C2.110 I.80 R. 0.5	501251100801			HSK-A63-HT5.54.5	41HT05046300	54.5 39.5		
K02 TA-C2.110 I.110 R. 0.25	501251101100			ANSI/CAT40-HT5.54.5	41HT05054000	54.5 39.5		
K02 TA-C2.110 I.110 R. 0.5	501251101101		<u></u> 20	DIN69871-A50-HT8.36.5	41HT08025000	36.5 21.5		
K02 TA-C2.170 I.110 R. 0.25	501251701100		2.17	MAS403 BT50-HT8.38.5	41HT08035000	38.5 23.5		
K02 TA-C2.170 I.110 R. 0.5	501251701101		ÖË	HSK-A100-HT8.76.5	41HT08041000	76.5 61.5		
U-DRIVE KB-KA1			₹ F	ANSI/CAT40-HT8.50.5	41HT08055000	50.5 35.5		
		0 0	15		TECHN		ΔΤΔ	

± 0.02

TECHNICAL DATA		TA-C2.110	TA-C2.170		
ØA	mm	110	170		
В	mm	104	164		
C radial traverse	mm	± 15	± 30		
D	mm	8 ^{+ 0.04} + 0.02	10 ^{+ 0.04} + 0.02		
E	mm	31	40		
F	mm	38	54		
G	mm	M 4	M5		
HT	mm	HT5	HT8		
I	mm	80/110	110		
L	mm	108	136		
Μ	mm	55	69		
N	mm	42	56		
0	mm	64.5	69		
P	mm	156 / 186	216		
Q	mm	19	19		
R	mm	12.5	12.5		
Feed	mm/min	1 ÷ 500			
Radial force	daN	150	250		
Maximum speed	RPM	2000	1600		
Torque	Nm	400	800		
Weight without the cone	Kg	5.7	16.5		
Boring accuracy		H7			
Max workable ø	mm	250	460		
Max chip removal on C40 steel	mm ²	0,5	1		
Roughness	Ra	0.8 - 1.2			

